|
還元(かんげん、Reduction)とは、計算可能性理論や計算複雑性理論において、ある問題を別の問題に変換することを意味する。帰着、変換などとも呼ばれる。変換の仕方によっては、問題の複雑性クラスを定義するのに使われる。 直観的に、問題 A が問題 B に還元されるとき、B の解法によって A の答えも得られる。従って A を解くことは B を解くよりも困難ではない。これを A ≤ B のように表記し、≤ に添え字をつけて還元の種類を示す。 == 概要 == 過去に解いたことのある問題によく似た問題に出会うことは珍しくない。そのような場合、その新しい問題を素早く解くには、新しい問題を過去の問題に変換して既知の解法で解くのがよいだろう。そして、逆変換することで最終的な答えが得られる。これは還元の最も分かり易い例である。 また、やや複雑な使用法だが、解くのが難しいことが分かっている問題があり、それとよく似た問題を与えられたとする。その新たな問題も同様に難しいのではないかと考えることだろう。ここで逆説的にその新しい問題は簡単に解けると仮定する。その上で過去の問題を新たな問題に簡単に変換(還元)することができたとすると矛盾が生じる。つまり、新たな問題も難しいということが分かるのである。 還元の非常に簡単な例を示す。それは「乗算」から「平方(二乗)」への還元である。我々が加算、減算、平方、2での除算しか知らないとする。その知識だけから、以下の方程式を使うと、任意の2つの数の積を得ることができる: : ''a'' × ''b'' = ((a + b)2 - a2 - b2)/2. 逆方向の還元も可能である。乗算を知っているなら平方を計算するのはたやすい。つまり、この2つの問題の複雑性は等しいことがわかる。このような還元はチューリング還元に関係する。 しかし、例えば平方は最後に1回しかできないといった制限を加えられると還元が難しくなる。この場合たとえ乗算を含めた基本的演算を全て使用できたとしても(最後に二乗するなら)還元は不可能である。というのも有理数からのような無理数を求めることはできないからである。逆方向では、最後に必ず乗算を行うという制限があっても全く問題なく平方を求めることができる。このような制限された還元を考えることで、乗算のほうが平方よりも複雑であるという(自明な)事実が明らかとなる。これは多対一還元に関係する。 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「還元 (計算複雑性理論)」の詳細全文を読む スポンサード リンク
|